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A summary is given of the validation of an integrated aircraft environmental simulation software, with 
focus on acoustic and engine exhaust emissions. First, an experimental campaign was carried out to 
gather noise data of several commercial aircraft on departure from Manchester airport (ICAO code: 
EGCC). Field measurements were taken with microphones placed at a point 8,500 m (4.6 n-miles) from 
the estimated brake-release point. The departure measuring point was chosen due to the variability 
in flight trajectories. Comparisons between measurements and numerical predictions are shown for 
12 commercial airplanes: A319-111, A320-214, A321-211, A330-243, A330-343, A350-900, A380-861, 
B737-800, B757-200, B787-800 and -900 versions, and finally the ERJ-195. The validated airplane 
models are used with a multi-objective, multi-parameter trajectory optimisation at the same airport to 
determine optimal departure profiles for airplanes in three weight classes: commuter jet, medium range 
transport, and long-range transport. It is demonstrated how different or concurrent cost functions (noise, 
fuel consumption, environmental price) lead to considerably different flight profiles and environmental 
emissions.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

The simulation of aircraft environmental emissions, and specif-
ically noise, lags behind other engineering simulations, although 
considerable progress is being demonstrated in the technical lit-
erature. Aside from detailed computational aero-acoustics at the 
level of isolated components (for example, jets or high-lift sur-
faces), the task of predicting aircraft noise and emissions relies 
on a vast number of data, assumptions and models. Often the 
database required is incomplete, imperfect or unreliable. This situ-
ation requires assumptions, not all directly verifiable, in support of 
reduced-order models. The current needs are split into three cate-
gories:

1. Models that rely on “best-practice” and use databases in or-
der to make quantitative assessments of airfield noise. These 
models provide rapid answers to extremely complex scenarios 
involving multiple aircraft movements on a typical day. Com-
puter codes on this line of thought include INM [1] and its 
later evolutions (including the FAA Aviation Environmental De-
sign Tool, AEDT), ANCON2 in the UK [2], the European ECAC 
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Doc. 29 [3], the ICAO general method [4] and a plethora of na-
tional initiatives leading to noise simulation models that apply 
to a set of airfields.

2. Models that rely on physical and engineering models, some-
times closed with empirical databases to provide detailed 
acoustic predictions for aircraft in the conventional configu-
ration (tube-and-wing), either at the preliminary design stage 
or as existing airplanes. We call models in this category “sci-
entific methods”. One of these methods is developed by the 
authors and briefly discussed in this paper.

3. Models as in the previous category, with capabilities in ar-
eas such as noise interference, advanced propulsion systems, 
and emissions analysis, that are used to provide acoustic pre-
dictions for unconventional aircraft, new conceptual designs, 
and trade-off analysis. The prime example in this category is 
ANOPP2 [5], but there are other examples, such as Ref. [6] to 
deal with blended wing-bodies and Ref. [7] for various config-
urations that include noise shielding.

A full review of the state-of-the-art is available in Ref. [8], and 
will thus not be repeated here. Best-practice methods offer an-
swers with some limited explanations. By contrast, scientific meth-
ods attempt to offer explanations and answers. For example, they 
help explore the contribution of various sub-systems to overall 
noise emission. Thus, they can guide the research toward the most 
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Nomenclature

C cost function
F N net thrust
J1, J2 optimiser cost functions
L A (or LA) A-weighted noise level
L AE sound exposure level
m mass
M total number of objectives
ni preference values
N1 engine speed
Pair atmospheric pressure
P awakening probability
P population size/density
ri uncertainty value
SEL Sound Exposure Level
t time
Tair atmospheric temperature
U unit cost
UDC unit damage cost index

V air speed
V g ground speed
V w wind speed
V vector
V (x) total preference value
V sensitivity vector
W f 6 fuel flow
x(x, y, z) aircraft position
α airplane attitude
γ climb angle
θ airplane heading
φ airplane bank angle
ψ airplane heading
�w wind direction
[.] mean value
(.)c control point
(.)o initial conditions
(.) f final conditions
effective strategies for noise reduction at the source, or toward the 
best operational strategies that minimise impact on specific areas 
around the airfield, including trajectory optimisation. In the latter 
case, noise prediction methods are used to infer noise differences 
between trajectories, rather than as absolute values. In the long 
term, we aim for a reliability that is sufficient for noise certifica-
tion.

There are only a few examples of complete field data taken for 
the purpose of noise validation. For example, Guerin et al. [9,10]
report noise measurements taken in combination with flight data, 
which allows for the correct airplane position and engine settings 
to be defined in a noise simulation problem. There are examples 
in the technical literature that address more sophisticated and de-
tailed measurements, using beam-forming techniques to identify 
noise sources and their respective locations [11]. These data are 
useful to identify directivity functions and prioritise noise abate-
ment techniques. However, noise levels vary considerably among 
different flyovers, even for the same airplane [12]; this causes dif-
ficulties when assessing the true contribution of a noise source.

In recent years, some advances have been demonstrated in the 
technical literature (for example, noise source identification and 
breakdown; detailed analysis of multiple noise metrics), but the 
scientific approach still has limited traction in comparison with 
best-practice methods that rely on extensive databases that are 
able to produce surrogate trajectories, noise-power-distance rela-
tionships and complete noise footprints around airfields. These 
models facilitate very general assessments and are instrumental in 
the definition of noise zones around important airfields — some-
thing which can be of national importance, well beyond the tech-
nical aspect.

At the opposite end of the simulation spectrum, high-fidelity 
computer codes are currently prohibitive in terms of times and 
computing costs, and are thus limited for more detailed sub-
component analysis at a limited number of operation points. This 
status is unlikely to change for the foreseeable future. This leaves 
us with low-order noise simulation procedures such as the ones 
described in this paper. These methods are developing rapidly, 
with increasing amounts of physics at a limited computational bur-
den. Nevertheless, there is only scant code-to-code comparison, or 
comparisons with flyover data to validate these methods with real-
world events. Comparisons with measured flyover trajectories are 
currently the best way to advance our simulation capabilities in 
this field of aircraft engineering.
Exhaust emissions are associated to the engine state and de-
pend on complex combustion chemistry. Such complexity is cir-
cumvented by using emission indices at key operating points for 
the main pollutants (NOx , CO, UHC). Relationships between fuel 
flow, engine rotational speed and emissions have been established 
for modern engines that allow a reasonable prediction of emis-
sions [13] from turbofan engines. Similar relationships are used in 
work shown here to complete the aircraft noise model with emis-
sions, to yield a comprehensive emission analysis software. Fuel 
flow comparisons between FDR and our computer codes were pre-
viously published in Refs. [14,15].

Specifically, this paper addresses three contributions. One is the 
development of an airplane database and the other is the field data 
sets used for this validation. The current software version (FLIGHT) 
contains about 50 different aircraft with engine combinations, in-
cluding turboprops, turbofans and cargo/freighter versions; noise 
validation for departure flights of 12 of these aircraft is demon-
strated in this paper. Another contribution is the addition of a 
sophisticated multi-objective trajectory optimisation mathematical 
model, which allows integrated environmental emissions, subject 
to a variety of cost limiters. Finally, the environmental model is 
applied to a real case of an airport to demonstrate how emissions 
minimisations are applied on a real map. A departure trajectory 
has been chosen in order to attempt to minimise aircraft emis-
sions above a major town south of the airfield.

2. Aircraft noise measurements

The airfield was Manchester airport, which is a major commer-
cial airport with over 200,000 movements per year and about 28 
million passengers. There is currently a limit of 60 flights/hour by 
using two parallel runways, one of which is unused during night 
time.

Microphone position. A field measurement setup was established 
at GPS location (53.318660, −2.366325), which is in an open field 
with grassland, near a lake, away from road traffic. This point was 
chosen because it is sufficiently close to the airfield and to the 
town of Knutsford (reference GPS: 53.3048, −2.3766); the town is 
just South of westbound departures (∼ 80% of occurrences) and 
below the flight track for eastbound landings (∼ 20% of occur-
rences).

The exact brake-release point was not known, but it was estab-
lished empirically at 8,500 m (4.6 n-miles) from the microphone 
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Fig. 1. SANBA 1Y (runway 2) noise routing of a Boeing B737-800 departing from Manchester airport; data elaborated from the PlaneFinder App, mapped with OpenStreetMaps; 
M denotes the microphone position.
from examination of digital maps of the airfield. This point is 
5.69 km from the South edge of runway 23R and 3.97 km from 
runway 23L. In a past exercise, we noted that radar tracks are too 
inaccurate for the determination of the aircraft position, and even 
the GPS location from the on-board flight data recorder could be 
inaccurate by more than one wing span [14].

Outbound flights at this airfield tend to follow a North-
West trajectory to avoid the built-up community of the town of 
Knutsford; this is known as SANBA 1R or 1Y noise preferential 
routing, Fig. 1. Therefore, it is very likely that ground tracks are 
slightly curved toward the noise measurement point, leading to 
a total flight path slightly in excess of 8.5 km. Due to the large 
source-receiver distance (several hundred metres), lateral ground 
track dispersion is unlikely to have any important effects on the 
numerical results.

Atmospheric conditions. Atmospheric conditions reported by 
METAR were as follows: temperatures between 4-8 degrees Cel-
sius on day-one and 7-11 degrees Celsius on day-two; wind speeds 
2-3 kt on day-one and 3-7 kt on day-two, from the W-S-W, with 
0-40 degree variability. The cloud base was between 600-1,700 
feet AGL on day-one and 100-1,700 feet on day-two. In all cases 
there was mist or drizzling rain. In summary, this was a winter 
period with minor precipitation, negligible winds, very low cloud 
base, poor visibility and high humidity level. These conditions are 
clearly different from a standard day.

Measurement set-up. Fly-over noise was measured using a Brüel 
& Kjaer (B&K) Type 2250 Sound Level Meter (SLM). This is a 
Class-1 SLM conforming to International Electrochemical Commis-
sion 61672-1:2013 international standard. The microphone was 
mounted on a tripod at a height of 1.2 m above ground level in 
compliance with the noise measurement practice. The microphone 
was placed horizontally, with the diaphragm parallel to the flight 
path to minimize directivity effects. The SLM was calibrated us-
ing a Class-1-compliant B&K Type 4231 sound calibrator prior to 
taking noise measurements; calibration was done every hour.

The SLM was set to run in logging mode to measure the broad-
band and 1/3-octave band levels with 1-second time increment 
(the shortest value available for type 2250 SLM). At the same time, 
the integral metrics were computed using the slow time setting 
(1 second integration time). These data, along with A-weighted 
and unweighted sound pressure level values, were stored towards 
the end of each logging period. SPL values were also logged using 
a logging period of 100 ms to provide a higher resolution of the 
measurement content.

The fly-over noise measurements were initiated manually on 
sight of the approaching aircraft and terminated manually when 
the noise level had dropped to near-background levels or such 
that the measurement had been taken for a sufficiently long du-
ration. This manual operation gave the operator more control over 
the duration of each measurement, alongside ensuring extraneous 
non-aircraft noise was not measured. The operator left the SLM for 
the duration of the noise event; additional noise induced by the 
motion of the operator could be recorded. For this reason, the first 
and few last seconds of each measurement were ignored to im-
prove accuracy.

Background noise. The background noise readings were periodi-
cally recorded for at least one minute when there were no ap-
proaching or receding aircraft and no additional audible noise 
sources. The content of the recording was annotated for each back-
ground noise measurement. The SLM was used in the same con-
figuration as for taking aircraft fly-over noise measurements with 
the broadband and 1/3-octave band levels logged. The number of 
background readings taken depended on the following three fac-
tors:

1. The amount of time spent to take aircraft noise measurements 
at the location

2. The presence of new noise sources that increased the back-
ground noise level significantly

3. The number of occasions when there was long enough be-
tween aircraft movements to take background measurements.

The A-weighted background noise levels, averaged over all in-
dividual background noise readings, for the two days were ap-
proximately 46.71 dBA and 44.02 dBA respectively, providing an 
approximate noise floor for the measured aircraft noise.

Airplane identification. Aircraft flying past the measurement point 
were to be identified from their registration number, for most 
cases, observed underneath the port wing by using a pair of binoc-
ulars. However, due to cloudy weather, the registration number 
could not always be identified. For this reason, a web application 
was used as an alternative to locate approaching aircraft and the 
given aircraft registrations and aircraft types were noted. During 
post-processing, passing aircraft were validated using the “Flight 
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Radar” application and the “WebTrak” service, which is used to 
monitor air transport movements and noise data by Manchester 
Airport. The details of the aircraft were thereupon checked against 
the data retrieved from the Aircraft Registration Database.

3. Aircraft noise simulations

The computer code used for the present work has been al-
ready documented in several previous publications, including but 
not limited to Ref. [14,16,17]. Previous comparisons with fly-over 
data include those reported in Ref. [18], and included both land-
ing and take-off for a limited number of aircraft types. A recent 
application of the computer code [19] addressed optimisation of 
A320-200 departure trajectories from Manchester airport, and it 
was demonstrated how it is possible to determine accurate differ-
ential noise footprints.

In this instance, it is recalled that the computer code is fully 
multi-disciplinary, and models the entire aircraft (geometry, mass 
distributions, configuration aerodynamics, propeller aerodynamics, 
flight mechanics, numerical optimisation, gas turbine propulsion 
and other aspects of modern fixed-wing aircraft). The computer 
code relies on a large number of inputs that have to be provided 
in order to define the airplane, the engine, the external conditions 
and the flight conditions. Sensitivity analysis is used to verify all 
the assumptions.

The simulation procedure is the following: a trajectory is estab-
lished on the basis of a tentative mission profile, which requires 
guessing the mission range, the required payload and other flight-
specific parameters; these include, but are not limited to, engine 
derating and climb-out procedure (typically: NADP, ICAO-A, ICAO-
B, or others). The trajectory is determined when there is con-
vergence between the estimated brake-release gross weight and 
the brake-release gross weight arising from the sum of all loaded 
mass contributions. Since specific data on the measured trajecto-
ries were unavailable, it was assumed that the flight path was 
slightly curved and passing above the measurement point. It was 
also assumed that our ground microphone position was within one 
wing span from the ground track.

The most important aspect of the numerical methods used in 
the computer code is that the long calculation chain, from the 
airplane’s geometrical configuration to noise measured at the re-
ceiver, requires a balanced approach, wherein the critical step is 
the weak link. This link is not always identifiable. For example, for 
a turbofan-powered airplane, the noise is dominated by the fan on 
approach to the receiver and by the jet on departure from the re-
ceiver. At the overhead position the two sources are comparable, 
but the exact contribution depends on the aircraft and the flight 
procedure. For these reasons, focus should be on these two noise 
sources.

The computer code has a large set of airplane models and their 
respective engines, to cover about 80% of the commercial world-
wide traffic. Additionally, there is a database of models for military 
transport aircraft and detailed airport models. A typical airplane 
model consists of the following:

• Geometry configuration file, defined by a set of cards and con-
trol points, which allows a full determination of positions, 
lengths, areas, centroids and mass distribution. This configu-
ration is passed to the aerodynamics module, which requires 
also aerodynamic derivatives. Furthermore, there is a furnish-
ings configuration file for the determination of the internal 
arrangement of the cabin and the position of the centre of 
gravity.

• Aerodynamic derivatives file, defined by a set of common 
derivatives for all the lifting surfaces the main flight controls 
(ailerons, flaps, elevators, rudders).
• Propeller model, defined by a geometric configuration, blade 
sections data, and aerodynamic polars (look-up tables) at one 
reference Mach number.

• Engine model, defined by a set of flight envelopes covering 
a full range of air temperatures, flight Mach numbers, flight 
altitudes and engine speeds. About 25 aero-thermodynamic 
parameters are normally used for flight, emissions and noise 
calculations.

• Airplane model data, consisting of about 50 critical parame-
ters, from certified weights to tyre dimensions.

• Engine model data, consisting of about 50 critical engine pa-
rameters, including general dimensions, nozzle, fan, intake 
configuration, and reference emission indices.

• APU model data, consisting of a flight envelope and basic per-
formance data, such as fuel flow, output power and in some 
case emission data.

In addition to the above, up to 100 fixed parameters are used 
at various levels to complete the airplane model (engine geometric 
data, operational data, flight limitations, etc.)

The airplane model is checked at several levels, including the 
sub-system analysis (geometry, aerodynamics, weights, centre of 
gravity, engine performance, point performance), until a full confi-
dence is reached, when no major discrepancy with known param-
eters is found, after passing through several hundred check-points.

The noise calculation is split from the flight analysis. When the 
trajectory is completed, a vector of time-dependent variables [16]
is generated (interface file):

V (t) = (
x, θ,φ,ψ, IAS,TAS, V g, F N , N1, W f 6,

LGear, iSF, Tair, Pair, R H, V w ,�w)
(1)

where x is the position vector, θ , φ, ψ are the attitude, bank an-
gle and attitude angle respectively; IAS, TAS, V g are the indicated 
air speed, true air speed, and ground speed, respectively; F N , N1
and W f 6 are the required net thrust, engine speed and fuel flow, 
respectively; LGear, iSF are the landing gear position and slat-flap 
settings, respectively; Tair , Pair , RH, V w , �w are atmospheric pa-
rameters at the airplane position x: air temperature, pressure, rel-
ative humidity, in addition to wind speed and wind direction. This 
interface file allows the exchange of critical data with other com-
puter programs. The gross weight W at the start of the trajectory 
must be given if the trajectory is self-generated by the computer 
code. The weight would not be required if data from the FDR are 
available; in this case, the most important parameters would be 
the engine speed N1% and the fuel flow W f 6. Note that the avail-
ability of both fuel flow and engine rotational speed throughout 
the entire flight can be used alongside emission indices to provide 
an accurate estimate of the exhaust emissions [15]. We will focus 
essentially on the CO2 emissions, which are proportional to fuel 
burn and hence can be derived directly from Eq. 1 without further 
modelling being required.

Most of the data required by the vector Eq. 1 are stored in the 
FDR. The time sampling is ∼1 s, but variable from take-off to a 
reference altitude of 3,000 feet above ground level. All calculations 
are performed as quasi-steady state, since the time step is too large 
to be considering transient effects on the engines.

4. Acoustic results and discussion

Results are shown for departure trajectories for a selected num-
ber of aircraft. In the analysis that follows, comparisons with 
noise simulations are shown alongside the measurements. The 
time frame is always taken as 60 seconds (±30 seconds around 
the overhead position). The noise level is always contained within 
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Table 1
Measured noise metrics: † = excluding one flyover; ‡ = single value; ∗ = predicted.

Airplane L Amax L Amax �L Amax L AE L∗
Amax

1 A319-111 78.6 75.0 5.3 84.1 73.8
2 A320-214 76.9 74.4 5.6 83.5 74.8
3 A321-211 78.0 77.7 0.7 86.8 76.3
4 A330-243 77.9 76.2 3.0 87.1 79.6
5 A330-343 81.1 80.6 0.9 91.2 79.3
6 A350-941 73.6 75.0 3.5 85.2 78.5
7 A380-861 80.1 77.9 4.5 87.9 81.1
8 B737-800 78.9 75.8 5.6 84.8 77.3
9 B757-200† 78.9 77.1 3.6 85.9 75.4

10 B787-800 80.0 78.1 4.1 85.9 79.3
11 B787-900 75.7 74.5 2.4 85.1 76.0
12 ERJ-195‡ 74.3 — — 82.5 71.6

the range 40-90 dBA. Most of the graphs show the slow-mode A-
weighted sound pressure level (L A , sometimes called L As), and in 
a few cases the equivalent sound-level L Aeq . The L A is shown ei-
ther as a continuous line (when a statistical analysis of the data 
is used), or as a set of symbols (when only a few trajectories are 
available). In the latter case, data points are plotted every 0.5 s
for clarity. The measured data are available at 0.1 s intervals. The 
trajectories and the corresponding labels contain the identifier [x-
nnn], where x = 1, 2 is the measurement day; “nnn” is the mea-
surement number. On all the graphs shown the airplane is to be 
interpreted as moving from the left (upstream) to the right (down-
stream).

Atmospheric and external conditions. The METAR data show some 
variability in temperature and relative humidity. The numerical 
simulations were all carried out at a temperature of 7 degrees, 
with a wind speed 2 kt on the ground, and a stable relative hu-
midity of 95%. Wind speeds less than 3 kt make no difference in 
the noise propagation; the relative humidity is more critical and 
would need to be entered as a space variable. The propagation 
model used is a modification of the wave-equation approach of 
Rasmussen and Almgren [20,21]. This method balances computa-
tional effort with accuracy by being able to conduct a propagation 
analysis in a practical amount of time; this is about 30-40 s on a 
desktop computer for a departure trajectory.

The background noise is included in the numerical simulations. 
Background noise does not affect peak noise level, but it is com-
parable to the airplane’s noise level at flight times ±25 s from the 
overhead position, as demonstrated below.

Summary of measured data. A summary of measured noise is 
given in Table 1, which contains data for 12 different airplane 
types and versions. The last column to the right is the predicted L A
value, L∗

A . It is to be noted that the variation in peak L A , �L Amax , 
is in excess of 5 dBA for three airplanes, whilst for others there 
can be too few trajectories to make a statistical assessment; such 
is the case of the Embraer ERJ-195. This is no different than other 
measurements available in the technical literature [12]. One tra-
jectory of the B757-200 showed much lower noise level than the 
other data and it was excluded from the analysis, although it will 
be later shown in the noise comparisons.

Comparisons between measurements and simulations. To begin 
with, Fig. 2 and Fig. 3 show the comparisons for the Airbus 
A319-111 and A320-214, respectively. For this airplane, 5 depar-
ture trajectories were available. For the A320 we had 11 trajecto-
ries; the trajectories with minimum and maximum noise and the 
simulated data are shown by thick lines. For reference, also the 
range of background noise is indicated in the graph. For this air-
plane, the noise level is simulated to a satisfactory level within the 
full frame.
Fig. 2. Noise measurements and predictions for the Airbus A319-111. Five flyovers 
available for this airplane.

Fig. 3. Noise measurements and predictions for the Airbus A320-214; eleven flyovers 
available.

The case of the Airbus A321-211 is not too dissimilar to the 
previous cases, with close prediction of the noise peak, but a gen-
eral noise under-prediction on the upstream segment, Fig. 4.

Next, we show the noise comparisons for the Airbus A330-243 
and -343, both powered by Rolls-Royce Trent 772 engines. Ac-
cording to the EASA noise certificate, the A330-243, with MTOW 
between 192 and 242 metric tons (weight configuration 026 and 
081, respectively), has a flyover noise level between 85.4 and 91.9 
EPNL(dB). The A330-343 has MTOW range between 190 and 233 
metric tons (weight variants 032 and 052, respectively). The certi-
fied flyover noise is substantially the same, between 85.5 and 91.9 
EPNL (dB). We conclude that there should not be substantial dif-
ferences between these airplanes at comparable take-off weights, 
unless different flight procedures are used.

In the measurements shown in Fig. 5, a difference of 5 dBA has 
been measured between the two aircraft versions. With a few fly-
overs, it is not possible to draw a robust conclusion. In absence of 
actual weight data, from an informal analysis of the airlines oper-
ating out of Manchester airport, we decided to assign a low gross 
weight to the A330-243, namely operating weight empty of 117 
metric tons. The noise comparison is shown in Fig. 6a. An excessive 
noise peak is predicted. This is due to excessive fan noise on the 
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Fig. 4. Noise measurements and predictions for the Airbus A321-211.

Fig. 5. Noise measurements for the Airbus A330-243 and A330-343 airplanes.

Fig. 7. Noise measurements and predictions for the Airbus A350-900.

approach segment, and excessive jet noise on the departure side. 
By contrast, the noise peak is well predicted for the A330-343, 
Fig. 6b.

There are broadly similar conclusions for the case of the Airbus 
A350-900, as shown in Fig. 7, in a comparison with three mea-
sured noise trajectories.

Noise comparisons for the Airbus A380-861 are less accurate, 
Fig. 8. In support of this numerical result, it is noted that excess 
noise level is due to the fan on the upstream segment and to the 
jet on the downstream segment. In the former case, the largest 
contribution is due to the inlet side; in the latter case, it is due 
to the transitional/intermediate-scale mixing noise, as shown in 
Ref. [22].

Field data indicate that there is �L Amax ∼ 5 dBA (Table 1); this 
points to large variability in the noise level. However, we are able 
to conclude that in light of the fact that better comparisons were 
achieved with other airplanes, the discrepancy must be attributed 
to the airplane model and/or its flight trajectory, along with the 
acoustic models themselves.

Next, we consider Boeing airplanes. The first case is the Boe-
ing B737-800; this is an airplane of widespread use and operating 
at most commercial airports around the world. Enough trajectories 
were available to draw a simple statistic analysis; however, only 
Fig. 6. Noise measurements and predictions for the Airbus A330-243 with Trent 772 engines.



376 A. Filippone et al. / Aerospace Science and Technology 89 (2019) 370–381
Fig. 8. Noise measurements and predictions for the Airbus A380-861.

Fig. 9. Noise measurements and predictions for the Boeing B737-800. Nineteen fly-
overs available for this airplane.

the actual noise recordings are shown in the graph. A comparison 
between field data and numerical simulations is shown in Fig. 9. 
In a few instances, the noise measurement terminated before ex-
iting the time frame, as the L Amax in Fig. 9. The predicted noise 
level is mostly within the confidence window, except for a period 
of 10-15 s on the downstream segment, where there is a noise 
under-prediction.

For the B757-200 only three trajectories were available, one of 
which unlikely to be correct, trajectory [1-006]; this event shown 
in Fig. 10, with predictions matching exactly one of the trajectories 
on the downstream segment. However, differences of 8-10 dBA are 
noted on field data on the downstream segment.

Two versions of the Boeing B787 were available from the field 
noise data: the -800 and the -900 versions. The measured data 
are shown in Fig. 11, and coloured by airplane version and mea-
surement date. The two airplane versions in these measurements 
have the same engine type. The most important difference be-
tween the two airplane versions is that the -900 has a lower noise 
peak and a shallower noise reduction from the overhead position; 
the -800 version indicates that there is a sharper noise abatement 
from the noise peak position. It is not possible to make much 
inference on these differences without a detailed trajectory anal-
ysis, although noise peak differences of 5 dBA are quite common 
Fig. 10. Noise measurements and predictions for the Boeing B757-200.

Fig. 11. Field noise measurements for the Boeing B787-800 and -900. (For interpre-
tation of the colours in the figure(s), the reader is referred to the web version of 
this article.)

(Table 1). However, for completeness, these two airplane versions 
were also simulated with the FLIGHT code. The comparison be-
tween simulation and measurements for the B-787-900 is shown 
in Fig. 12a. The main discrepancy is in the noise peak, estimated 
at ∼ 4 dBA. For the -800 version, the peak noise is well predicted, 
but the noise decay after the peak is over-estimated, Fig. 12b. This 
is certainly not due to lateral dispersion of the flight track, since 
such an event is associated to a more shallow noise signal (lower 
peak, longer noise decay).

An analysis of the sub-components reveals that this excess 
noise is due to the jet. Jet noise is modelled with an implemen-
tation of the Stone model [22], with geometric parameters as part 
of the airplane configuration and the aero-thermodynamic param-
eters at the nozzle from the engine model. The engine model is 
the same for the two airplane versions. Since the previous case 
of the B787-900 did not show such an under-prediction, it must 
be assumed that the thrust cut back on this phase of the climb-
out is rather different from the simulated thrust schedule. From 
a report of departures at London Heathrow airport [23], it has 
been established that airlines optimise their flight profiles, with 
essentially similar climb profile of up to 1,500 feet; above this alti-
tude, the trajectories have altitude differences up to 900 feet at 8.5 
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Fig. 12. Noise measurements and predictions for the Airbus B787-900 and -800.

Fig. 13. Vertical profile of B787 departure trajectories at London Heathrow [23].
km (4.6 n-miles) from brake-release. Thrust settings are variable 
not necessarily to reduce noise, but also to reduce engine wear 
costs.

Flight trajectories elaborated from Ref. [23] for the B787 are 
shown in Fig. 13 to demonstrate the vertical spread. The data, 
which are only classified by airline and do not include take-off 
weight specification, refer to a mix of Rolls-Royce Trent and Gen-
eral Electric GEnx engines, with the lowest and highest trajec-
tories corresponding to Trent engines. For reference, a simulated 
B787-800 trajectory with 95% engine derating is also shown, to 
demonstrate that the default trajectory is well within the enve-
lope of the flight data. In our model, at 3,000 feet AGL the flight 
is forced to a level acceleration. Ground track dispersion on de-
parture cannot be neglected; therefore, blind simulations like the 
present ones are limited by the amount of knowledge available on 
the specific flight.

The final case of turbofan airplane is the Embraer ERJ-195, for 
which only one field measurement was available. Fig. 14 shows 
the comparison between numerical simulations and both the slow-
mode L A and the fast-mode noise level L A (logged using a log-
ging period of 100 ms to provide a higher resolution). The noise 
shown in Fig. 14 is about 3 dBA lower for the ERJ-175 air-
plane.
Fig. 14. Noise measurements and predictions for the Embraer ERJ-195.

5. Trajectory optimisation for minimum emissions

A detailed description of the numerical method used for 
trajectory optimisation is available in [19]. In brief, the opti-
mal trajectory problem is described an optimal control problem 
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Fig. 15. En-route aircraft climb with control points A, B, C, D, E.
with three control variables u = [N1, γ , φ]T which are the in-
puts of the dynamics system formed by the state variables x =
[V , γ , χ, x, y, z, m]T . Briefly, the departure trajectory is optimised 
subject to the cost functions

min J1 = EPNL, J2 = CO2 (2)

Since the cost function cannot be explicitly expressed by the 
derivatives of the dynamics variables, a multi-objective evolution-
ary algorithm, namely the Non-dominated Sorting Genetic Algo-
rithm II [24], is adopted for its performance and fast convergence.

To discretise the problem, the trajectory is segmented in the 
vertical plane and parametrised with Bézier splines in the hor-
izontal plane. The number of free parameters required for this 
multi-objective optimisation problem is reduced to eight:

P = [γA, V B , zB , γB , V D , N1C D , xc, yc]T (3)

The underscores A, B , C , D refer to the control points in the climb-
out trajectory shown in Fig. 15.

Two posterior selection strategies are adopted to evaluate 
Pareto optimal solutions obtained by the optimiser by transferring 
and valuing environmental indexes of different physical character-
istics with a single metric. The first one is the aggregated prefer-
ence value function method based on the physical programming 
theory to classify and quantify the criteria by introducing decision 
makers’ (DM) professional knowledge and experience [25,26].

After each objectives is assigned a preference value ni(x), the 
decision-making process is to find the solution with the minimum 
V (x):

min
x

V (x) =
M∑

i=1

ni(x) (4)

where M is the total number of objectives. The latter one is the 
monetisation method which focuses more on the cost effective-
ness of the objectives (fuel burn, noise level and engine exhaust 
emissions) of the solutions obtained, which depends more on the 
environmental policies and their damage costs. The unit cost of 
noise protection for a population [27], U , is widely-used for envi-
ronmental noise problems. The noise-induced damage cost can be 
expressed as:

Cost of awakening =
∑

Uk Pa,k Pk (5)

where Pa,k is the probability of awakening of people living in the 
kth noise sensitive zone enclosing a population of size Pk . The 
Sound Exposure Level (SEL) at Knutsford is used to calculate the 
cost of awakening in the process of posterior selection. The method 
proposed by the ANSI (American National Standards Insititute) is 
adopted to predict the probability of an individual noise event 
awakening a person as a result of the SEL [28]

Pa,k = 1

1 + e−(−6.8884+0.04444 SELindoor)
(6)

where SELindoor = SELoutdoor −20.5dB. U is assigned the average to-
tal costs per person affected by noise prior to the implementation 
of noise reduction measures, which is discussed in Ref. [29].

For the carbon emissions, the social cost of carbon [30] is used; 
this term reflects the economic cost of climate change caused by 
one additional metric of carbon dioxide emitted. As for the cost 
of other pollutants such as NOx , the cost of damage for average 
transport [31] is used for aircraft flight operations. The posterior 
selection is to choose the minimum economic cost Cmin of the op-
timised solutions:

Cmin = UP + UDCNOx · NOx + UDCCO2 · CO2 + UCfuel · m f uel (7)

where UDC is the unit damage cost and m f uel is the fuel burn.

5.1. Optimal departure trajectories

We considered three aircraft in different weight classes to eval-
uate the environmental emissions on departure. These aircraft: 
Embraer ERJ-195, Airbus A320-211 and Airbus A380-861. Since 
there is a residential community near the end of runway 23R/05L 
in Knutsford, a UK gridded population based on the 2011 Cen-
sus and the 2007 Land Cover Map [32] is introduced to estimate 
the exposure impact by the aviation activities. The gridded popu-
lation data based on the British National Grid (OSGB36 datum) has 
a 1 km by 1 km spatial resolution for each square cell. To simplify 
the problem, it is assumed that all the population enclosed in the 
grid is gathered in the geometric centre of it, so the noise impact 
on that grid cell will be estimated using the noise level (expressed 
in terms of EPNL) received at that single point. A noise-sensitive 
region of 3 km × 3 km in the town of Knutsford (coordinates: 
53.30329◦N, 2.37316◦ W) with a population grid cell size of 1 km 
by 1 km is used for the analysis on the departure operation.

Note that J1 is the EPNL measured at the centre of the cell at 
Knutsford. With the origin coordinate located at the end of runway 
23R/05L, the aircraft has initial condition x0 = −916.7 m, y0 =
−399.6 m, z0 = 73 m, V 0 = 75 m/s. The final point {x f , y f } =
{−18, 119, −16, 709} m, is defined with the reference of an ex-
isting instrumental departure routing known as SANBA 1R1Y Noise 
Preferential Routing. Based on the method proposed in Ref. [19], 
the lateral track to be optimised is segmented into the initial 
straight leg and the following Bézier curve segment with one free 
control point (xc, yc). The 3D trajectory is fully described by 8 free 
parameters, and the original optimal control problem is discretised 
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Table 2
Free parameters settings.

Parameter Lower bound Upper bound

γA 3 degrees 12 degrees
V B 80 m/s 100 m/s
zB 243.8 m 457.2 m
γB 3 degrees 12 degrees
V D 80 m/s 125 m/s
N1 70% 103%
xc −16,000 m −6,000 m
yc −4,000 m 8,000 m

into a parameter optimisation problem. Table 2 shows the free pa-
rameters settings. In this table, γ is the flight path angle, V is the 
airspeed, z the flight altitude.

Fig. 16 shows the tracks following the SANBA 1Y routes for the 
three optimal trajectories subject to minimum EPNL at Knutsford 
(South of the plotted map) and minimum environmental cost. Note 
the lateral spreading in excess of 2,000 m from the E195 to the 
A320. The latter airplane is able to make a rapid manoeuvre away 
from the built-up area, North of the lake, before turning South. 
The ground track differences between noise-alone and total envi-
ronmental cost are minimal.

A similar scenario, using the fuel (or CO2) emissions as a cost 
function, shows less lateral spreading, Fig. 17, and a less curved 
trajectory to reach the target altitude, with the airplanes pass-
ing above the lake. The E195 and the A320 airplanes would be 
roughly above the noise measuring station discussed earlier. The 
vertical flight profiles are shown in Fig. 18, which again shows a 
large variability in terms of altitudes and speeds. For the same air-
plane (for example, the Airbus A380), a comparison of Figs. 18a 
and 18c indicates that the vertical variability for minimum noise 
and minimum fuel is considerably smaller. There is only minimal 
difference between the minimum-EPNL and minimum-cost vertical 
profiles, Fig. 18a and 18b.

5.2. Sensitivity analysis

The sensitivity of the aircraft systems parameters (by them-
selves uncertain) has been carried out for the minimum-noise 
trajectory of the Airbus A320-211. By using this trajectory, whose 
track is shown in Fig. 16, we have inserted random perturbations 
Fig. 16. Optimal trajectories, subject to minimum EPNL (thick lines) at Knutsford and subject to minimum environmental cost (thin lines). Map elaborated from the website 
OpenStreetMap.

Fig. 17. Optimal trajectories, subject to minimum fuel burn and minimum CO2 (minimum fuel to a target altitude). Map elaborated from the website OpenStreetMap.
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Fig. 18. Optimal climb profiles of three airplane models; these are the same flights 
as in Figs. 16–17. There are only minor differences between cases a.) and b.)

on 19 uncorrelated key aircraft and operational parameters (7 en-
gine parameters, 5 airframe parameters, 3 atmospheric parameters, 
3 aircraft position data and ground impedance values). Previous 
work showed a sensitivity analysis for single-parameter perturba-
tions [14]. In this instance, we define a perturbation vector dV

dV = {V i(1 ± RND ri)} (8)

where ri is the amplitude of the parameter V i and RND is a ran-
dom number; thus, a generic parameter V i can vary uniformly 
at random within the range [V i − ri, V i + ri]. Engine parameters 
such as mass flow rate, fuel flow, exhaust gas temperature, engine 
speed, etc. have an amplitude of 1.5% to 3% around the reference 
values. Airframe parameters (nozzle geometry, inlet duct, etc.) are 
varied by 10% and aircraft position is varied as much as a fuselage 
length in all directions.

A run with 30 random vectors, Eq. 8, has led to a perturbation 
result shown in Fig. 19. We note that there can be a ±2 EPNL(dB) 
and ±2 dB in L Amax uncertainty in the result compared to the 
baseline case. The standard deviation is estimated as 0.9 EPNL(dB) 
and 0.45 dB, respectively. These sensitivities are not dissimilar to 
the uncertainties verified in the noise measurements.

6. Conclusions

Comparisons of noise emissions are shown for 12 different 
commercial airplanes during normal operations at a major inter-
national airport. Simulations have been carried out with a multi-
disciplinary environmental computer code that contains a mix of 
models, some based on physics and others based on empirical ev-
idence. Noise measurements were taken at a single point on the 
departure side to provide validation data. It was not possible to 
gather data at multiple locations.
Fig. 19. Noise sensitivity analysis for an optimal departure trajectory of the Airbus 
A320-211.

It is demonstrated that flyover noise from commercial airplanes 
can be predicted to a good level of accuracy over a flight time 
of the order of 40 to 60 seconds, centred around the overhead 
position. This conclusion holds also in consideration of large un-
certainties surrounding the flight parameters and in relatively poor 
atmospheric conditions.

A subset of airplane models in the FLIGHT program has been 
validated for flyover noise predictions. There remain a number of 
cases for which the comparisons between numerical simulations 
and field data show a discrepancy that cannot be explained with 
the data at hand (Boeing B787-800 and A380-861).

The field measurements themselves show a degree of variabil-
ity, above ∼ 5 dBA, the overhead position, and up to 15 dBA at 
flight times t ∼ ±20 s around the overhead position. Although the 
specific reasons could not be investigated, because we had no ac-
cess to airplane data, it is reasonable to assume that the flight path 
and the thrust settings are the dominant causes. These effects have 
been further investigated by adding a sophisticated multi-objective 
multi-parameter flight trajectory optimisation algorithm. The new 
optimisation module was applied to three airplane models, among 
those verified in the noise comparisons.

Further to these effects, local atmospheric effects are known 
to be responsible for large changes in sound pressure level at 
large distances. Minimum airplane distances in the cases analysed 
were always of the order of several hundred metres, which makes 
random effects more plausible. Overall, the comparisons between 
field data and the numerical simulations are better for those cases 
where a larger set of trajectories was available. This is entirely rea-
sonable, since the statistics eliminates spurious data and reduces 
the uncertainty of the noise event.

Although the numerical results show margins for improve-
ments, these have to be pursued only in parallel with dedicated 
field measurements, which must include details on the flight tra-
jectory and the engine state. One of the main challenges in pre-
dicting aircraft noise is understanding which factors are important 
and which are inessential. This understanding greatly facilitates the 
task, and allows to focus the efforts only on those items that are 
likely to make an important difference.

By using several cost functions, either based on noise alone, 
or emissions alone, or combinations between noise and exhaust 
emissions, it is possible to optimise departure trajectories. The ro-
bustness of the method is demonstrated with three airplanes in 
three different weight classes and a sensitivity analysis has been 
included to assess the effects of system parameters on the result-
ing noise metrics.
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An important advantage of the computer code is that it is not 
airport-dependent. Therefore, the study of optimal departure tra-
jectories can be extended to any airport with any specific con-
straints, such as fixed way-points including obstacle avoidance (tall 
buildings or narrow valleys).

Conflict of interest statement

None declared.

Acknowledgements

The author wishes to thank the student Yun Lee Wong for tak-
ing the field measurements. Adrian Harwood provided technical 
support with the measurements and the post-processing of the 
data. The park authorities at Tatton Park, Cheshire, UK, are thanked 
for allowing the measurements to take place over a two-day period 
in December 2017. Co-author Mengying Zhang wishes to acknowl-
edge the financial support from China Scholarship Council (File No. 
201403170405).

References

[1] E.R. Boeker, E. Dinges, B. He, G. Fleming, C.J. Roof, P.J. Gerbi, A.S. Rapoza, J. 
Hemann, Integrated Noise Model (INM) Version 7.0, Technical Report FAA-AEE-
08-01, Federal Aviation Administration, Jan. 2008.

[2] J.B. Ollerhead, D.P. Rhodes, M.S. Viinikainen, D.J. Monkman, A.C. Woodley, The 
UK Civil Aircraft Noise Contour Model ANCON: Improvements in Version 2, 
Technical Report R&D 9842, ERCD Dept., Civil Aviation Authority (CAA), Jun. 
1999.

[3] E.C.A.C. Report, On Standard Method of Computing Noise Contours Around Civil 
Airports. Vol. 2: Technical Guide, Technical Report Doc. 29, European Civil Avi-
ation Conference, Dec. 2005.

[4] ICAO. Recommended Method for Computing Noise Contours Around Airports. 
Montreal, 2008, Doc. 9911.

[5] L.V. Lopes, C.L. Burley, Design of the next generation aircraft noise prediction 
program: ANOPP2, in: 17th AIAA/CEAS Aeroacoustics Conf., AIAA 2011-2854, 
Portland, Jun. 2011.

[6] D. Crichton, E. de la Rosa Blanco, T. Law, J. Hileman, Design and operation 
for ultra low noise take-off, in: 45th AIAA Aerospace Sciences Meeting, AIAA 
2007-0456, Reno, NV, Jan. 2007.

[7] L. Bertsch, W. Dobrzynski, S. Guerin, Tool development for low-noise aircraft 
design, J. Aircr. 47 (2) (Mar. 2010) 694–699.

[8] A. Filippone, Aircraft noise prediction, Prog. Aerosp. Sci. 68 (July 2014) 27–63, 
https://doi .org /10 .1016 /j .paerosci .2014 .02 .001.

[9] S. Guerin, U. Michel, H. Siller, Airbus A319 database from dedicated flyover 
measurements to investigate noise abatement procedures, in: 11th AIAA/CEAS 
Aeroacoustics Conf., AIAA 2005-2981, Monterey, CA, May 2005.

[10] M. Pott-Pollenske, W. Dobrzynski, H. Buchholz, S. Guerin, G. Sauressig, U. Finke, 
Airframe noise characteristics from flyover measurements and predictions, in: 
12th AIAA/CEAS Aeroacoustics Conf., AIAA 2006-2567, Cambridge, May 2006.

[11] H. Siller, U. Michel, Buzz-saw noise spectra and directivity from flyover tests, 
in: 12th AIAA/CEAS Aeroacoustics Conf., AIAA 2002-2562, Cambridge, MA, May 
2002.

[12] D.G. Simons, M. Snellen, B. van Midden, M. Arntzen, D.HT. Bergmans, Assess-
ment of noise level variations of aircraft flyovers using acoustic arrays, J. Aircr. 
52 (5) (2015) 1625–1633, https://doi .org /10 .2514 /1.C033020.
[13] S.L. Baughcum, T.G. Tritz, S.C. Henderson, D.C. Pickett, Scheduled Civil Aircraft 
Emission Inventories for 1992: Database Development and Analysis, Technical 
Report NASA CR-4700, NASA, April 1996, Appendix D.

[14] A. Filippone, Multi-disciplinary simulation of propeller-turboprop aircraft flight, 
Aeronaut. J. 116 (1184) (Oct 2012) 985–1014.

[15] A. Filippone, N. Bojdo, Statistical model for gas turbine engines exhaust emis-
sions, Transp. Res., Part D, Transp. Environ. 59 (2018) 451–463, https://doi .org /
10 .1016 /j .trd .2018 .01.019.

[16] A. Filippone, Advanced Aircraft Flight Performance, Cambridge Univ. Press, 
2012.

[17] A. Filippone, Theoretical framework for the simulation of transport air-
craft flight, J. Aircr. 47 (5) (Sept 2010) 1669–1696, https://doi .org /10 .2514 /1.
C000252.

[18] A. Filippone, A. Harwood, Flyover noise measurements and predictions of com-
mercial airplanes, J. Aircr. 53 (2) (2015) 396–405, https://doi .org /10 .2514 /1.
C033370.

[19] M. Zhang, A. Filippone, N. Bojdo, Multi-objective optimisation of aircraft depar-
ture trajectories, Aerosp. Sci. Technol. (2018), https://doi .org /10 .1016 /j .ast .2018 .
05 .032.

[20] K.B. Rasmussen, Sound propagation over grass covered ground, J. Sound Vib. 
78 (2) (1981) 247–255, https://doi .org /10 .1016 /S0022 -460X(81 )80036 -3.

[21] M. Almgren, Simulation by using a curved ground scale model of outdoor 
sound propagation under the influence of a constant sound speed gradi-
ent, J. Sound Vib. 118 (2) (Oct. 1987) 353–370, https://doi .org /10 .1016 /0022 -
460X(87 )90531 -1.

[22] J.R. Stone, E.A. Krejsa, B.J. Clark, J.J. Berton, Jet Noise Modeling for Sup-
pressed and Unsuppressed Aircraft in Simulated Flight, Technical Report 
TM-2009-215524, NASA, Mar. 2009.

[23] Anon, Noise Data for the First 17 Months of Boeing 787 Operations at 
Heathrow Airport, Technical Report CAP 1191, Civil Aviation Authority, Environ-
mental Research & Consultancy, Gatwick airport, July 2014, (available online).

[24] K. Deb, A. Pratap, S. Agarwal, T.AM.T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II., IEEE Trans. Evol. Comput. 6 (2) (2002) 
182–197, https://doi .org /10 .1109 /4235 .996017.

[25] A. Messac, Physical programming-effective optimization for computational de-
sign, AIAA J. 34 (1) (1996) 149–158, https://doi .org /10 .2514 /3 .13035.

[26] J. Sanchis, M.A. Martínez, X. Blasco, Integrated multiobjective optimization and 
a priori preferences using genetic algorithms, Inf. Sci. 178 (4) (February 2008) 
931–951, https://doi .org /10 .1016 /j .ins .2007.09 .018.

[27] O. Zaporozhets, V. Tokarev, K. Attenborough, Aircraft Noise: Assessment, Pre-
diction and Control, CRC Press, 2011.

[28] Quantities, Procedures for Description and Measurement of Environmental 
Sound Part 6: Methods for Estimation of Awakenings Associated With Outdoor 
Noise Events Heard in Homes, Standard ANSI S12.9-2008/part 6, International 
Organization for Standardization, New York, USA, January 2008.

[29] The Centre for Strategy & Evaluation Services LLP. Evaluation of Directive 
2002/49/EC Relating to the Assessment and Management of Environmental 
Noise Finial Report. Publications Office of the European Union, Brussels, Au-
gust 2016.

[30] Department of Energy and Climate Change. Carbon Valuation in UK Policy 
Appraisal: A Revised Approach. Technical Report, Department of Energy and 
Climate Change, July 2009.

[31] DEFRA, Aluing Impacts on Air Quality: Updates in Valuing Changes in Emis-
sions of Oxides of Nitrogen (NOx) and Concentrations of Nitrogen Dioxide 
(NO2), Technical report, Department for Environment, Food and Rural Affairs, 
Sept 2015.

[32] Reis S, Liska T, Steinle S, Carnell E, Leaver D, Roberts E, Vieno M, Beck R, 
and Dragosits U. UK Gridded Population 2011 based on Census 2011 and Land 
Cover Map 2015, 2017.

http://refhub.elsevier.com/S1270-9638(18)32409-X/bib494E4D37s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib494E4D37s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib494E4D37s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E434F4E32s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E434F4E32s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E434F4E32s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E434F4E32s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib6563616332s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib6563616332s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib6563616332s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E4F505032s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E4F505032s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib414E4F505032s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib4372696368746F6E5F736169s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib4372696368746F6E5F736169s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib4372696368746F6E5F736169s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib42657274736368s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib42657274736368s1
https://doi.org/10.1016/j.paerosci.2014.02.001
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib47756572696E5F32303035s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib47756572696E5F32303035s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib47756572696E5F32303035s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib706F74745F32303036s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib706F74745F32303036s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib706F74745F32303036s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib53696C6C657233s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib53696C6C657233s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib53696C6C657233s1
https://doi.org/10.2514/1.C033020
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib426175676863756D3936s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib426175676863756D3936s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib426175676863756D3936s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib666C6967687433s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib666C6967687433s1
https://doi.org/10.1016/j.trd.2018.01.019
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib66696C6970706F6E655F435550s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib66696C6970706F6E655F435550s1
https://doi.org/10.2514/1.C000252
https://doi.org/10.2514/1.C033370
https://doi.org/10.1016/j.ast.2018.05.032
https://doi.org/10.1016/S0022-460X(81)80036-3
https://doi.org/10.1016/0022-460X(87)90531-1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib53746F6E65s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib53746F6E65s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib53746F6E65s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib63617031313931s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib63617031313931s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib63617031313931s1
https://doi.org/10.1109/4235.996017
https://doi.org/10.2514/3.13035
https://doi.org/10.1016/j.ins.2007.09.018
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib7A61706F726F7A686574735F61697263726166745F32303131s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib7A61706F726F7A686574735F61697263726166745F32303131s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib616E73695F7175616E7469746965735F32303038s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib616E73695F7175616E7469746965735F32303038s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib616E73695F7175616E7469746965735F32303038s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib616E73695F7175616E7469746965735F32303038s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib64656672615F76616C75696E675F32303135s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib64656672615F76616C75696E675F32303135s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib64656672615F76616C75696E675F32303135s1
http://refhub.elsevier.com/S1270-9638(18)32409-X/bib64656672615F76616C75696E675F32303135s1
https://doi.org/10.1016/j.trd.2018.01.019
https://doi.org/10.2514/1.C000252
https://doi.org/10.2514/1.C033370
https://doi.org/10.1016/j.ast.2018.05.032
https://doi.org/10.1016/0022-460X(87)90531-1

	Validation of an integrated simulation model for aircraft noise and engine emissions
	1 Introduction
	2 Aircraft noise measurements
	3 Aircraft noise simulations
	4 Acoustic results and discussion
	5 Trajectory optimisation for minimum emissions
	5.1 Optimal departure trajectories
	5.2 Sensitivity analysis

	6 Conclusions
	Conﬂict of interest statement
	Acknowledgements
	References


